Lithium-Decorated Borospherene B40: A Promising Hydrogen Storage Medium

نویسندگان

  • Hui Bai
  • Bing Bai
  • Lin Zhang
  • Wei Huang
  • Yue-Wen Mu
  • Hua-Jin Zhai
  • Si-Dian Li
چکیده

The recent discovery of borospherene B40 marks the onset of a new kind of boron-based nanostructures akin to the C60 buckyball, offering opportunities to explore materials applications of nanoboron. Here we report on the feasibility of Li-decorated B40 for hydrogen storage using the DFT calculations. The B40 cluster has an overall shape of cube-like cage with six hexagonal and heptagonal holes and eight close-packing B6 triangles. Our computational data show that Lim&B40(1-3) complexes bound up to three H2 molecules per Li site with an adsorption energy (AE) of 0.11-0.25 eV/H2, ideal for reversible hydrogen storage and release. The bonding features charge transfer from Li to B40. The first 18 H2 in Li6&B40(3) possess an AE of 0.11-0.18 eV, corresponding to a gravimetric density of 7.1 wt%. The eight triangular B6 corners are shown as well to be good sites for Li-decoration and H2 adsorption. In a desirable case of Li14&B40-42 H2(8), a total of 42 H2 molecules are adsorbed with an AE of 0.32 eV/H2 for the first 14 H2 and 0.12 eV/H2 for the third 14 H2. A maximum gravimetric density of 13.8 wt% is achieved in 8. The Li-B40-nH2 system differs markedly from the previous Li-C60-nH2 and Ti-B40-nH2 complexes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Ti-decorated B40 fullerene as a promising hydrogen storage material

The newly found B40 is the first experimentally observed all-boron fullerene and has potential applications in hydrogen storage. Here we investigate the binding ability and hydrogen storage capacity of Ti-decorated B40 fullerene based on DFT calculations. Our results indicate that Ti shows excellent binding capability to B40 compared with other transition metals. The B40 fullerene coated by 6 T...

متن کامل

Electronic structures and electronic spectra of all-boron fullerene B40.

This study is motivated by the recent discovery of the first all-boron fullerene analogue, a B40 cluster with D(2d) point-group symmetry, dubbed borospherene (Nat. Chem., 2014, 6, 727). Insight into the electronic structures and spectral properties of B40 is timely and important to understand the borospherene and the transition from open-ended plate or ribbon-like structures to a hollow-cage st...

متن کامل

Dynamical behavior of Borospherene: A Nanobubble

The global minimum structure of borospherene (B40) is a cage, comprising two hexagonal and four heptagonal rings. Born-Oppenheimer Molecular Dynamics simulations show that continuous conversions in between six and seven membered rings take place. The activation energy barrier for such a transformation is found to be 14.3 kcal · mol(-1). The completely delocalized σ- and π-frameworks, as well as...

متن کامل

Li-decorated metal-organic framework 5: a route to achieving a suitable hydrogen storage medium.

A significant improvement in molecular hydrogen uptake properties is revealed by our ab initio calculations for Li-decorated metal-organic framework 5. We have found that two Li atoms are strongly adsorbed on the surfaces of the six-carbon rings, one on each side, carrying a charge of +0.9e per Li atom. Each Li can cluster three H(2) molecules around itself with a binding energy of 12 kJ (mol H...

متن کامل

Hydrogen Adsorption on (5,0) and (3,3) Na-decorated BNNTs

The storage capacity of hydrogen on Na-decorated born nitride nanotubes (BNNTs) is investigated by using density functional theory within Quantum Espresso and Gaussian 09. The results obtained predict that a single Na atom tends to occupy above the central region of the hexagonal rings in (5,0) and (3,3) BNNT structures with a binding energy of -2.67 and -4.28 eV/Na-atom respectively. When a si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016